Source code for aquaduct.utils.maths
# -*- coding: utf-8 -*-
# Aqua-Duct, a tool facilitating analysis of the flow of solvent molecules in molecular dynamic simulations
# Copyright (C) 2016-2018 Tomasz Magdziarz, Alicja Płuciennik, Michał Stolarczyk <info@aquaduct.pl>
# Copyright (C) 2019 Tomasz Magdziarz <info@aquaduct.pl>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from collections import namedtuple
[docs]class NumpyDefaultsStorageTypes(object):
"""
Default types that are enforced in :class:`numpy.ndarray` objects.
.. note::
It is used only througt :attr:`defaults` instance.
"""
float_default = np.float64
int_default = np.int64
int_type = np.int8
defaults = NumpyDefaultsStorageTypes()
"""
Instance of :class:`~NumpyDefaultsStorageTypes` to store default values.
"""
[docs]def make_default_array(array_like):
"""
:param array_like: Array like object
:return: Array with dtype set to :attr:`NumpyDefaultsStorageTypes.float_default`.
"""
if isinstance(array_like, np.ndarray):
return array_like.astype(defaults.float_default)
return np.array(array_like).astype(defaults.float_default)
[docs]class MemMap(namedtuple('MemMap', 'filename dtype shape')):
"""
Provides simple convenience wrapper for :func:`numpy.memmap`.
"""
[docs] def readonly(self):
"""
:return: Memory map object in 'r' mode.
:rtype: numpy.core.memmap.memmap
"""
return np.memmap(self.filename, mode='r', dtype=self.dtype, shape=self.shape)
[docs] def readwrite(self):
"""
:return: Memory map object in 'r+' mode.
:rtype: numpy.core.memmap.memmap
"""
return np.memmap(self.filename, mode='r+', dtype=self.dtype, shape=self.shape)
[docs]class ArrayOrArray(object):
"""
Convenience class for handling :class:`numpy.ndarray` and :class:`numpy.core.memmap.memmap` objects in a transparent way.
"""
def __init__(self, filename=None, dtype=None, shape=None):
"""
:param filename str: Optional name of the file to store memory mapped object.
:param dtype: Optional dtype of array, if `None` default value of :class:`NumpyDefaultsStorageTypes.float_default` is used.
:param shape: Shape of the array.
If no `filename` is given then regular :class:`numpy.ndarray` is created with :func:`numpy.zeros`.
Otherwise :class:`~MemMap` object is created.
"""
assert shape is not None, "Cannot make array without shape."
if dtype is None:
dtype = defaults.float_default
if filename is None:
self.array = np.zeros(shape, dtype=dtype)
else:
self.array = MemMap(filename, dtype, shape)
@property
def isndarray(self):
"""
:return: `True` if underlaying object is of :class:`numpy.ndarray` type.
:rtype: bool
"""
return isinstance(self.array)
[docs] def readwrite(self):
"""
:return: Array with read-write access.
"""
if self.isndarray:
return self.array
return self.array.readwrite()
[docs] def readonly(self):
"""
:return: Array with read only access, if possible
"""
if self.isndarray:
return self.array
return self.array.readonly()
def __call__(self):
"""
By default this calls :func:`~ArrayOrArray.readwrite`.
:return: Array with read-write access.
"""
return self.readwrite()