Source code for aquaduct.utils.maths

# -*- coding: utf-8 -*-

# Aqua-Duct, a tool facilitating analysis of the flow of solvent molecules in molecular dynamic simulations
# Copyright (C) 2016-2018  Tomasz Magdziarz, Alicja Płuciennik, Michał Stolarczyk <info@aquaduct.pl>
# Copyright (C) 2019  Tomasz Magdziarz <info@aquaduct.pl>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import numpy as np
from collections import namedtuple


[docs]class NumpyDefaultsStorageTypes(object): """ Default types that are enforced in :class:`numpy.ndarray` objects. .. note:: It is used only througt :attr:`defaults` instance. """ float_default = np.float64 int_default = np.int64 int_type = np.int8
defaults = NumpyDefaultsStorageTypes() """ Instance of :class:`~NumpyDefaultsStorageTypes` to store default values. """
[docs]def make_default_array(array_like): """ :param array_like: Array like object :return: Array with dtype set to :attr:`NumpyDefaultsStorageTypes.float_default`. """ if isinstance(array_like, np.ndarray): return array_like.astype(defaults.float_default) return np.array(array_like).astype(defaults.float_default)
[docs]class MemMap(namedtuple('MemMap', 'filename dtype shape')): """ Provides simple convenience wrapper for :func:`numpy.memmap`. """
[docs] def readonly(self): """ :return: Memory map object in 'r' mode. :rtype: numpy.core.memmap.memmap """ return np.memmap(self.filename, mode='r', dtype=self.dtype, shape=self.shape)
[docs] def readwrite(self): """ :return: Memory map object in 'r+' mode. :rtype: numpy.core.memmap.memmap """ return np.memmap(self.filename, mode='r+', dtype=self.dtype, shape=self.shape)
[docs]class ArrayOrArray(object): """ Convenience class for handling :class:`numpy.ndarray` and :class:`numpy.core.memmap.memmap` objects in a transparent way. """ def __init__(self, filename=None, dtype=None, shape=None): """ :param filename str: Optional name of the file to store memory mapped object. :param dtype: Optional dtype of array, if `None` default value of :class:`NumpyDefaultsStorageTypes.float_default` is used. :param shape: Shape of the array. If no `filename` is given then regular :class:`numpy.ndarray` is created with :func:`numpy.zeros`. Otherwise :class:`~MemMap` object is created. """ assert shape is not None, "Cannot make array without shape." if dtype is None: dtype = defaults.float_default if filename is None: self.array = np.zeros(shape, dtype=dtype) else: self.array = MemMap(filename, dtype, shape) @property def isndarray(self): """ :return: `True` if underlaying object is of :class:`numpy.ndarray` type. :rtype: bool """ return isinstance(self.array)
[docs] def readwrite(self): """ :return: Array with read-write access. """ if self.isndarray: return self.array return self.array.readwrite()
[docs] def readonly(self): """ :return: Array with read only access, if possible """ if self.isndarray: return self.array return self.array.readonly()
def __call__(self): """ By default this calls :func:`~ArrayOrArray.readwrite`. :return: Array with read-write access. """ return self.readwrite()